Abstract

The state-of-the-art high efficiency video coding (HEVC/H.265) adopts the hierarchical quadtree-structured coding unit (CU) to enhance the coding efficiency. However, the computational complexity significantly increases because of the exhaustive rate-distortion (RD) optimization process to obtain the optimal coding tree unit (CTU) partition. In this paper, we propose a fast CU size decision algorithm to reduce the heavy computational burden in the encoding process. In order to achieve this, the CU splitting process is modeled as a three-stage binary classification problem according to the CU size from [Formula: see text], [Formula: see text] to [Formula: see text]. In each CU partition stage, a deep learning approach is applied. Appropriate and efficient features for training the deep learning models are extracted from spatial and pixel domains to eliminate the dependency on video content as well as on encoding configurations. Furthermore, the deep learning framework is built as a third-party library and embedded into the HEVC simulator to speed up the process. The experiment results show the proposed algorithm can achieve significant complexity reduction and it can reduce the encoding time by 49.65%(Low Delay) and 48.81% (Random Access) on average compared with the traditional HEVC encoders with a negligible degradation (2.78% loss in BDBR, 0.145[Formula: see text]dB loss in BDPSNR for Low Delay, and 2.68% loss in BDBR, 0.128[Formula: see text]dB loss in BDPSNR for Random Access) in the coding efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call