Abstract

We perform a rigorous runtime analysis for the Univariate Marginal Distribution Algorithm on the LeadingOnes function, a well-known benchmark function in the theory community of evolutionary computation with a high correlation between decision variables. For a problem instance of size $n$, the currently best known upper bound on the expected runtime is $\mathcal{O}(n\lambda\log\lambda+n^2)$ (Dang and Lehre, GECCO 2015), while a lower bound necessary to understand how the algorithm copes with variable dependencies is still missing. Motivated by this, we show that the algorithm requires a $e^{\Omega(\mu)}$ runtime with high probability and in expectation if the selective pressure is low; otherwise, we obtain a lower bound of $\Omega(\frac{n\lambda}{\log(\lambda-\mu)})$ on the expected runtime. Furthermore, we for the first time consider the algorithm on the function under a prior noise model and obtain an $\mathcal{O}(n^2)$ expected runtime for the optimal parameter settings. In the end, our theoretical results are accompanied by empirical findings, not only matching with rigorous analyses but also providing new insights into the behaviour of the algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.