Abstract

In this work, we investigate a (1+1) Evolutionary Algorithm for optimizing functions over the space {0,...,r} n, where r is a positive integer. We show that for linear functions over {0,1,2}n, the expected runtime time of this algorithm is O(n log n). This result generalizes an existing result on pseudo-Boolean functions and is derived using drift analysis. We also show that for large values of r, no upper bound for the runtime of the (1+1) Evolutionary Algorithm for linear function on {0,...,r}n can be obtained with this approach nor with any other approach based on drift analysis with weight-independent linear potential functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.