Abstract
Very recently, the first mathematical runtime analyses for the NSGA-II, the most common multi-objective evolutionary algorithm, have been conducted. Continuing this research direction, we prove that the NSGA-II optimizes the OneJumpZeroJump benchmark asymptotically faster when crossover is employed. Together with a parallel independent work by Dang, Opris, Salehi, and Sudholt, this is the first time such an advantage of crossover is proven for the NSGA-II. Our arguments can be transferred to single-objective optimization. They then prove that crossover can speed up the (mu+1) genetic algorithm in a different way and more pronounced than known before. Our experiments confirm the added value of crossover and show that the observed advantages are even larger than what our proofs can guarantee.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.