Abstract
Deep learning (DL) has achieved a significant performance in computer vision problems, mainly in automatic feature extraction and representation. However, it is not easy to determine the best pooling method in a different case study. For instance, experts can implement the best types of pooling in image processing cases, which might not be optimal for various tasks. Thus, it is required to keep in line with the philosophy of DL. In dynamic neural network architecture, it is not practically possible to find a proper pooling technique for the layers. It is the primary reason why various pooling cannot be applied in the dynamic and multidimensional dataset. To deal with the limitations, it needs to construct an optimal pooling method as a better option than max pooling and average pooling. Therefore, we introduce a dynamic pooling layer called RunPool to train the convolutional neural network (CNN) architecture. RunPool pooling is proposed to regularize the neural network that replaces the deterministic pooling functions. In the final section, we test the proposed pooling layer to address classification problems with online social network (OSN) dataset.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Intelligence Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.