Abstract

In the distributed hydrological simulations for complex mountain areas, large amounts of meteorological input parameters with high spatial and temporal resolutions are necessary. However, the extreme scarcity and uneven distribution of the traditional meteorological observation stations in cold and arid regions of Northwest China makes it very difficult in meeting the requirements of hydrological simulations. Alternatively, regional climate models (RCMs), which can provide a variety of distributed meteorological data with high temporal and spatial resolution, have become an effective solution to improve hydrological simulation accuracy and to further study water resource responses to human activities and global climate change. In this study, abundant and evenly distributed virtual weather stations in the upper reaches of the Heihe River Basin (HRB) of Northwest China were built for the optimization of the input data, and thus a regional integrated environmental model system (RIEMS) based on RCM and a distributed hydrological model of soil and water assessment tool (SWAT) were integrated as a coupled climate–hydrological RIEMS-SWAT model, which was applied to simulate monthly runoff from 1995 to 2010 in the region. Results show that the simulated and observed values are close; Nash–Sutcliffe efficiency is higher than 0.65; determination coefficient (R2) values are higher than 0.70; percent bias is controlled within ±20%; and root-mean-square-error-observation standard deviation ratio is less than 0.65. These results indicate that the coupled model can present basin hydrological processes properly, and provide scientific support for prediction and management of basin water resources.

Highlights

  • Global climate change caused by human activities and natural factors has a profound impact on water resources

  • Regional climate models (RCMs), which can provide a variety of distributed meteorological data with high temporal and spatial resolution, can compensate for the scarcity and uneven distribution of meteorological observation stations and become an effective solution for hydrological model application and prediction and management studies of water resources [6]

  • Weather input parameters were prepared by scale transformation and climate parameter weatherand input parameters were prepared by scale transformation climate parameter calculation calculation virtual weather stations, which served as climateand forcing input parameters for soil and water assessment tool (SWAT), and virtual weather stations, which served as climate forcing input parameters for SWAT, were used were used based on regional integrated environmental model system (RIEMS); coupling model simulation could be done

Read more

Summary

Introduction

Global climate change caused by human activities and natural factors has a profound impact on water resources. Water scarcity has threatened sustainable development around the world, and water resource prediction and management have become a key issue [1,2]. In inland river basins in cold and arid regions of Northwest China, runoff mainly comes from the upper reaches, and is important for sustainable development of midstream and downstream regions. The runoff simulation in upper reaches is fundamental for the prediction and management of basin water resources [3,4]. Regional climate models (RCMs), which can provide a variety of distributed meteorological data with high temporal and spatial resolution, can compensate for the scarcity and uneven distribution of meteorological observation stations and become an effective solution for hydrological model application and prediction and management studies of water resources [6]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.