Abstract
Runoff is the result from the comprehensive action of climate conditions and drainage area underlying surface. Rainfall, evaporation, temperature, wind speed, solar radiation and relative humidity are the most important factor which effect on runoff. Prediction of runoff amounts is performed using Support Vector Machine (SVM). In this paper, the prediction of runoff for Chalous River basin along the Caspian Sea is investigated. A model based on SVM approach is proposed to runoff, predicated on a total of 8 years daily data sets, including field investigation records for the Chalous River Basin along the southern shoreline of Caspian Sea. This study addresses the question of whether Support Vector Machine (SVM) approach could be used to predict runoff. Results revealed that SVM provides an effective means of efficiently recognizing accurately predicting the runoff and the prediction of the future runoff evolution trend with this model will provide the basis for water regulation and water resources reasonable configuration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.