Abstract

AbstractRunoff‐induced sediments were collected in the Hallamish dune field for four years (1990–1994). Runoff and consequently water‐transported sediments were generated on the dunes owing to the presence of a thin microbiotic crust. These sediments were analysed for their particle‐size distribution and carbonate content. In addition, the organic matter content was calculated by measuring the chlorophyll content within the runoff. The results were compared to the slope parent material, i.e. the crust and the underlying sand, as well as to playa sediments, which are scattered within the Hallamish interdunal areas, and which were previously hypothesized to originate from runoff‐induced sediments.Higher amounts of fines (silt and clay) and carbonate characterize the footslopes in comparison to the midslopes. Intermediate contents of fines (17 per cent) and carbonate (8 per cent) characterized the sediments in comparison to the fines (27 per cent) and carbonate (15 per cent) of the crust and to the fines (4 per cent) and carbonate (4 per cent) of the underlying sand. The runoff‐induced fines and carbonate contents were significantly different from those of the playas, suggesting that the playa flats do not originate from runoff‐induced sediments.The sediments were enriched with organic matter. Organic matter which originates from the crust amounted to 0·3–0·4 per cent as compared to ≤0·1 per cent in the bare sand. Nevertheless, the crust was found to be relatively resilient to water flow. Only 0·1–0·5 per cent of the crust was annually eroded off the slope by water, with south‐facing crusts showing higher resilience than north‐facing crusts. The data may thus assist in the evaluation of the crust's residence time. Copyright © 2001 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.