Abstract

We measured precipitation, runoff, and several meteorological factors associated with evapotranspiration in evergreen broadleaf forest watersheds in Kampong Thom Province, central Cambodia. All the studied watersheds have flat topography, with Vatica odorata and Mynistica iners as the primary plant species. The mean tree height in the upper crown layer was 27 m and the maximum tree height was 45 m. Meteorological factors were observed from a 60-m-high meteorological observation tower. The heat budget method, which incorporates the Bowen ratio, was used to calculate the energy balance above the forest canopy. To estimate evapotranspiration, meteorological data were collected during two sampling periods: October 2003, near the end of the rainy season, and March 2004, in the middle of the dry season. Average daily evapotranspiration levels calculated for the late rainy season and middle of the dry season were 4.4 mm/day and 4.9 mm/day, respectively. A continuous simulation model (modified HYCY model) was then applied with the obtained streamflow data for the watersheds. Evapotranspiration calculated using the tower observations was included as a model parameter. The estimated runoff matched observed runoff comparatively well for small watersheds. The model parameters varied in correspondence with the watershed size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.