Abstract

Vegetation influences runoff and soil losses in semiarid environments. In shrublands of Central Argentina, grazing has resulted in a reduction of plant cover, an increase in the proportion of bare soil, and eroded soils. Patterns of runoff and soil losses affected by seeding cultivated grasses were evaluated. We investigated the effects of roller-seeding of Cenchrus ciliaris L and the influence of microsite cover-type on the dynamics of water erosion. Evaluated cover-types were: bare soil, shortgrass cover, and tallgrass cover. Evaluations were performed 2 growing seasons after roller-seeding. The experimental design was a split-plot, replicated 3 times using a portable rainfall simulator. After simulation runs of 45 min at an average rate of 110 mm hour-1, runoff of tallgrass cover was the least, whereas bare soil and shortgrass cover had similar values (ca. 60%). However, both types of grass cover reduced soil splash compared to the bare soil cover-type. An exponential function between runoff and soil loss suggested that increasing runoff beyond 60% produced an abrupt rising of sediment loss. Roller-seeding did not influence runoff or sediment loss at the microsite-scale. Nevertheless, roller-seeding reduced the proportion of area covered by microsites prone to erosion (bare soil and shortgrass cover-types) at the whole plot level. We propose that any management tool that promotes the replacement of bare soil and shortgrasses by tallgrasses should reduce runoff and increase forage productivity via amelioration of hydrologic conditions of the rangeland site. Conversely, overgrazing will result in more bare soil, increasing runoff, and further intensifying the loss of sediments by detachment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call