Abstract

China’s railway network is wide, and some of them cross the seismic zone, and the ratio of high-speed railway (HSR) bridges is high. Therefore, the safety of trains on the bridge may be endangered in the event of an earthquake. Because the response of track–bridge system is sensitive to the randomness of bridge structural parameters during the earthquake, while the train wheelset is directly in contact with the track system, the running safety of train (RST) may be also sensitive to the randomness of structural parameters. In this paper, the model of train–bridge coupled system (TBCS) under earthquake was established, and the accuracy of the model was verified by test results. To efficiently calculate the safety performance of trains considering the randomness of structural parameters, the point estimation method (PEM) was used in this paper, and the applicability of PEM was proved by comparing with the calculation results of Monte Carlo simulation (MCS). Then, PEM was used to discuss the running safety performance of trains under different ground motion (GM) intensities, different train speeds, and different pier heights. Finally, based on the maximum probability, the GM intensity threshold of a bridge based on running safety is determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call