Abstract
Online experiments allow for fast, massive, cost-efficient data collection. However, uncontrolled conditions in online experiments can be problematic, particularly when inferences hinge on response-times (RTs) in the millisecond range. To address this challenge, we developed a mobile-friendly open-source application using R-Shiny, a popular R package. In particular, we aimed to replicate the numerical distance effect, a well-established cognitive phenomenon. In the task, 169 participants (109 with a mobile device, 60 on a desktop computer) completed 116 trials displaying two-digit target numbers and decided whether they were larger or smaller than a fixed standard number. Sessions lasted ~7-minutes. Using generalized linear mixed models estimated with Bayesian inference methods, we observed a numerical distance effect: RTs decreased with the logarithm of the absolute difference between the target and the standard. Our results support the use of R-Shiny for RT-data collection. Furthermore, our method allowed us to measure systematic shifts in recorded RTs related to different OSs, web browsers, and devices, with mobile devices inducing longer shifts than desktop devices. Our work shows that precise RT measures can be reliably obtained online across mobile and desktop devices. It further paves the ground for the design of simple experimental tasks using R, a widely popular programming framework among cognitive scientists.
Highlights
IntroductionThey became the principal data collection tool during the COVID-19 pandemic to keep projects running
Many paradigms in cognitive science rely on measuring response times (RTs) at the millisecond-range
Since participants will use different OSs, web browsers, and devices, in potentially distracting contexts, online experiments may resemble the setting of an uncontrolled environment
Summary
They became the principal data collection tool during the COVID-19 pandemic to keep projects running. A valuable source of information in experimental psychology is participants’ response times (RTs). While RTs are crucial to infer many psychological processes (e.g. Stroop interference effect), RT measures are extremely susceptible to noise and interference. Oftentimes, millisecond-range precision is required to detect effects on RT (Plant, 2016). Assessing the reliability of RT data obtained in webbased experiments is paramount
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.