Abstract

Nerve-induced muscle contraction regulates the BDNF/TrkB neurotrophic signalling to retrogradely modulate neurotransmission and protect the neuromuscular junctions and motoneurons. In muscles with amyotrophic lateral sclerosis, this pathway is strongly misbalanced and neuromuscular junctions are destabilized, which may directly cause the motoneuron degeneration and muscular atrophy observed in this disease. Here, we sought to demonstrate (1) that physical exercise, whose recommendation has been controversial in amyotrophic lateral sclerosis, would be a good option for its therapy, because it normalizes and improves the altered neurotrophin pathway and (2) a plausible molecular mechanism underlying its positive effect. SOD1-G93A mice were trained following either running or swimming-based protocols since the beginning of the symptomatic phase (day 70 of age) until day 115. Next, the full BDNF pathway, including receptors, downstream kinases and proteins related with neurotransmission, was characterized and motoneuron survival was analysed. The results establish that amyotrophic lateral sclerosis-induced damaging molecular changes in the BDNF/TrkB pathway are reduced, prevented or even overcompensated by precisely defined exercise protocols that modulate TrkB isoforms and neurotransmission regulatory proteins and reduce motoneuron death. Altogether, the maintenance of the BDNF/TrkB signalling and the downstream pathway, particularly after the swimming protocol, adds new molecular evidence of the benefits of physical exercise to reduce the impact of amyotrophic lateral sclerosis. These results are encouraging since they reveal an improvement even starting the therapy after the onset of the disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.