Abstract
Systems of functional–differential and functional equations occur in many biological, control and physics problems. They also include functional–differential equations of neutral type as special cases. Based on the continuous extension of the Runge–Kutta method for delay differential equations and the collocation method for functional equations, numerical methods for solving the initial value problems of systems of functional–differential and functional equations are formulated. Comprehensive analysis of the order of approximation and the numerical stability are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.