Abstract
AbstractIn the present study, Runge–Kutta schemes are used to simulate unsteady flow in elastic pipes due to sudden valve closure. The spatial derivatives are discretized using a central difference scheme. Second‐order dissipative terms are added in regions of high gradients while they are switched off in smooth flow regions using a total variation diminishing (TVD) switch. The method is applied to both one‐ and two‐dimensional water hammer formulations. Both laminar and turbulent flow cases are simulated. Different turbulence models are tested including the Baldwin–Lomax and Cebeci–Smith models. The results of the present method are in good agreement with analytical results and with experimental data available in the literature. The two‐dimensional model is shown to predict more accurately the frictional damping of the pressure transient. Moreover, through order of magnitude and dimensional analysis, a non‐dimensional parameter is identified that controls the damping of pressure transients in elastic pipes. Copyright © 2006 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Fluids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.