Abstract

Much of the literature on runaway reactions deals with the consequences such as mechanical damage toxic and flammable release. The DIERS literature provides effective methods for vent sizing where experimental information is requested. Thermal stability measurements provide information on the onset temperature and kinetic data for chemical reactions. There is less information on the way the runaway reactions occur whereas the runaway reactions may have different causes. The purpose of this paper is to describe the various process deviations which can cause a runaway reaction to occur and to discuss the experimental information necessary for risk assessment, the choice of a safe process and the mitigation of the consequences of the runaway reaction. Each possible hazardous process deviation is illustrated by examples from the process industry and/or relevant experimental information obtained from laboratory experiments. The typical hazardous situations to be considered are the following: 1) The homogeneous thermal runaway due to too high a temperature. 2) The homogeneous runaway reaction by unintended introduction of additional reactants or catalyst. 3) The heterogeneous runaway reaction due to too high a local temperature. 4) The heterogeneous runaway reaction caused by slow heat conduction to the outside. 5) The runaway reaction caused by excess residence time at the process temperature (autocatalytic reactions). 6) The runaway reaction caused by reactant accumulation. The controling reactant feed rate is higher than the consumption rate perhaps because the temperature is too low, or the catalyst is absent. 7) The runaway reaction due to the pressurization of the enclosure by gaseous oxidizing intermediates (typical of nitric oxidations). 8) The runaway reaction due to phase separation of unstable species (liquids, solids) by loss of mixing or on cooling. 9) The runaway reaction on mixing of fast reacting chemicals in separate phases. 10) The runaway reaction due to fire or external heating. Considering the various runaway situations, the effectiveness of the following approaches is discussed: - Theoretical and experimental information required for hazard assessment. - Choice of adequate process conditions. - Choice of adequate methods for process control. - Experimental information required for vent sizing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.