Abstract

New results from the generation of runaways and the loss of runaway electrons in an ergodized magnetic field are presented. For the generation process, a clear difference between a ‘normal’ and a clean, freshly boronized wall condition has been found. Under clean wall conditions, one observes at low densities not only the runaway electrons with energies up to 30 MeV and at discharges with even lower electron density one finds more runaway electrons but at an energy in the low-MeV regime. The runaway electrons are utilized as test particles for revealing the ergodized magnetic field line structure. For the measurements the m/n = 6/2 base mode configuration of the dynamic ergodic divertor (DED), has been applied. One observes a clear modification of the radial runaway profile with preferential losses in the ergodized zone. From the loss rate of the runaway electrons due to ergodization and from the redistribution of the runaways after the DED phase, the diffusion rate is estimated to be of the order of 0.1 m2 s−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.