Abstract
This study systematically explores the parameter space of disruption mitigation through shattered pellet injection in ITER with a focus on runaway electron (RE) dynamics, using the disruption modeling tool Dream. The physics fidelity is considerably increased compared to previous studies, by e.g. using realistic magnetic geometry, resistive wall configuration, thermal quench onset criteria, as well as including additional effects, such as ion transport and enhanced RE transport during the thermal quench. The work aims to provide a fairly comprehensive coverage of experimentally feasible scenarios, considering plasmas representative of both non-activated and high-performance DT operation, different thermal quench onset criteria and transport levels, a wide range of hydrogen and neon quantities injected in one or two stages, and pellets with various characteristic shard sizes. Using a staggered injection scheme, with a pure hydrogen injection preceding a mixed hydrogen-neon injection, we find injection parameters leading to acceptable RE currents in all investigated discharges without activated runaway sources. Dividing the injection into two stages is found to significantly enhance the assimilation and minimize RE generation due to the hot-tail mechanism. However, while a staggered injection outperforms a single stage injection also in cases with radioactive RE sources, no cases with acceptable RE currents are found for a DT-plasma with a 15MA plasma current.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.