Abstract

We present a proof-of-principle measurement of runaway electrons in a small tokamak using a silicon strip detector. The detector was placed inside the diagnostic port of the tokamak vessel and detected the runaway electron signal directly. The measured signal was compared to the signal provided by other tokamak diagnostics, especially the hard X-ray scintillation detector, which detects secondary photons created by interaction of accelerated electrons with tokamak walls (indirect detection of runaway electrons). The preliminary results show that when not saturated, direct detection with a segmented silicon strip detector provides promising new diagnostic information including spatial and temporal distribution of the runaway electron beam, and the measurement results are in good agreement with hard X-ray measurements with a scintillation detector.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call