Abstract
Low-thermal inertia experiments in the open cell configuration were carried out to perform a comprehensive sensitivity analysis of the parameters affecting the runaway self-decomposition of dicumyl peroxide (DCP). This study facilitates a better understanding on how concentration, initial back pressure, and fill level influence DCP runaway severity. The outcome of this experimental study was compared to previous adiabatic closed cell experiments, with the aim of clarifying the discrepancies reported in the literature and contributing to essential knowledge about self-decomposing peroxide systems.Results showed that the detected onset temperature, maximum temperature, maximum pressure, and time to maximum rate are affected by the configuration of the equipment and initial back pressure of the experiments, while the adiabatic temperature rise did not seem to be affected. The roles that the kinetics, fluid dynamics, and thermodynamics play on these observations is addressed and discussed through the manuscript.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.