Abstract
The problem of sea-wave run-up on a beach is discussed within the framework of exact solutions of a nonlinear theory of shallow water. Previously, the run-up of solitary waves with different forms (Gaussian and Lorentzian pulses, a soliton, special-form pulses) has already been considered in the literature within the framework of the same theory. Depending on the form of the incident wave, different formulas were obtained for the height of wave run-up on a beach. A new point of this study is the proof of the universality of the formula for the maximum height of run-up of a solitary wave on a beach for the corresponding physical choice of the determining parameters of the incident wave, so that the effect of difference in form is eliminated. As a result, an analytical formula suitable for applications, in particular, in problems related to tsunamis, has been proposed for the height of run-up of a solitary wave on a beach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.