Abstract

We present an analytical study of the propagation and run-up of long waves in piecewise sloping, U-shaped bays using the cross-sectionally averaged shallow water equations. The nonlinear equations are transformed into a linear equation by utilizing the generalized Carrier–Greenspan transform (Rybkin et al. J Fluid Mech 748:416–432, 2014). The solution of the linear wave propagation is taken as the boundary condition at the toe of the last sloping segment, as in Synolakis (J Fluid Mech 185:523–545, 1987). We then consider a piecewise sloping bathymetry, and as in Kanoglu and Synolakis (J Fluid Mech 374:1–28, 1998), find the linear solution in the near shore region, which can be used as the boundary condition for the nonlinear problem. Our primary results are an analytical run-up law for narrow channels and breaking criteria for both monochromatic waves and solitary waves. The derived analytical solutions reduce to well-known solutions for parabolic bays and plane beaches. Our analytical predictions are verified in narrow bays via a comparison to direct numerical simulation of the 2-D shallow water equations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call