Abstract

Many optimization algorithms converge to stationary points. When the underlying problem is nonconvex, they may get trapped at local minimizers and occasionally stagnate near saddle points. We propose the Run-and-Inspect Method, which adds an "inspect" phase to existing algorithms that helps escape from non-global stationary points. The inspection samples a set of points in a radius $R$ around the current point. When a sample point yields a sufficient decrease in the objective, we move there and resume an existing algorithm. If no sufficient decrease is found, the current point is called an approximate $R$-local minimizer. We show that an $R$-local minimizer is globally optimal, up to a specific error depending on $R$, if the objective function can be implicitly decomposed into a smooth convex function plus a restricted function that is possibly nonconvex, nonsmooth. For high-dimensional problems, we introduce blockwise inspections to overcome the curse of dimensionality while still maintaining optimality bounds up to a factor equal to the number of blocks. Our method performs well on a set of artificial and realistic nonconvex problems by coupling with gradient descent, coordinate descent, EM, and prox-linear algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.