Abstract

Few studies have examined the effects of feeding total mixed ration (TMR) versus roughage and concentrate separately (SF) on ruminant methane production. Therefore, this study compared differences in methane production, ruminal characteristics, total tract digestibility of nutrients, and rumen microbiome between the two feeding methods in Holstein steers. A total six Holstein steers of initial bodyweights 540 ± 34 kg were divided into two groups and assigned to a same experimental diet with two different feeding systems (TMR or SF) in a crossover design with 21 d periods. The experimental diet contained 73% concentrate and 27% forage and were fed twice a day. The total tract digestibility of crude protein, neutral detergent fibre, and organic matter were not affected by the two different feeding systems. Steers fed TMR emitted more methane (138.5 vs. 118.2 L/d; P < 0.05) and lost more gross energy as methane energy (4.0 vs. 3.5% gross energy intake; P = 0.005) compared to those fed SF. Steers fed TMR had greater (P < 0.05) total volatile fatty acid (VFA), ammonia-N concentrations and propionate proportion of total VFA at 1.5 h, whereas lower after that compared to steers fed SF. The greater (P < 0.05) acetate: propionate ratio at 4.5 h for steers fed TMR reflected the shift of H2 sink from propionate towards acetate synthesis. The lower (P < 0.05) isobutyrate and isovalerate proportions of total VFA observed in steers fed TMR implies decrease in net consumption of H2 for microbial protein synthesis compared to SF. There were no differences in both major bacterial and archaeal diversity between TMR and SF, unlike several minor bacterial abundances. The minor groups such as Coprococcus, Succiniclasticum, Butyrivibrio, and Succinivibrio were associated with the changes in ruminal VFA profiles or methanogenesis indirectly. Overall, these results indicate that SF reduces methane emissions from ruminants and increases propionate proportion of total VFA without affecting total tract digestion compared to TMR. There were no evidences that the response differed due to different major underlying microbial population.

Highlights

  • Greenhouse gas emissions from livestock production are expected to increase over the coming decades due to the projected increase in demand for livestock products [1]

  • Alternative feeding strategies such as total mixed ration (TMR) is of interest [3], because it has been reported to be of significant benefit in terms of increasing feed intake and digestibility; minimising choice feeding among individual feeds; and maintaining sufficient fibre intake to support rumen health, such as a stable ruminal pH and a lower acetate: propionate ratio (A/P) ratio [5] [6] compared to animals fed roughage and concentrates separately (SF)

  • The TMR mixing process increased the percentage of particles less than 1.18 mm and decreased the percentage of particles >19 mm (P < 0.05 and P = 0.01, respectively) (Table 3)

Read more

Summary

Introduction

Greenhouse gas emissions from livestock production are expected to increase over the coming decades due to the projected increase in demand for livestock products [1]. The use of these compounds as feed additives has not been promising because of several adverse effects, such as a reduction in fibre digestibility and feed intake, toxicity to the rumen microbiome, and questions regarding the persistence of the effect. Increasing the productivity of cattle to reduce CH4 emissions is a key area of interest because reducing the ruminant population being farmed is not an option. Alternative feeding strategies such as total mixed ration (TMR) is of interest [3], because it has been reported to be of significant benefit in terms of increasing feed intake and digestibility; minimising choice feeding among individual feeds; and maintaining sufficient fibre intake to support rumen health, such as a stable ruminal pH and a lower A/P ratio [5] [6] compared to animals fed roughage and concentrates separately (SF). There were contradictory reports that feeding a TMR had no effect on animal performance or the carcass traits of steers [7] and milk production and milk composition [8] [9]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.