Abstract

This experiment compared the rumen degradability characteristics of five starch-based concentrate supplements used by Western Australia (WA) dairy producers. Six rumen-fistulated, non-lactating, Holstein-Friesian cows were used to measure the in sacco rumen degradability of maize grain, oats, wheat, sodium hydroxide-treated wheat (NaOH wheat) and Maximize® (a commercial pellet commonly used by WA dairy producers). Cows were offered a basal diet of custom-made cubes (60 : 40 lucerne hay : wheat grain) at maintenance feeding level. Rumen disappearance of dry matter (DM), starch and crude protein was determined for each concentrate at 0, 1, 2, 4, 8, 16, 24, 36, 48 and 72 h, and fitted to an exponential model to estimate degradation kinetics. Effective degradability coefficients were then calculated at three rumen solid-outflow rates (0.02, 0.05 and 0.08/h). Degradability of DM at 0.08/h was lowest (P < 0.001) in maize grain (0.64) and oats (0.68) and greatest in wheat (0.83), with that in NaOH wheat (0.80) and Maximize (0.76) being intermediate. Starch degradability at 0.08/h was also lowest (P < 0.001) in maize grain (0.70), intermediate for NaOH wheat (0.83) and Maximize (0.87), and greatest for wheat (0.96) and oats (0.98). Degradability of crude protein was lowest (P = 0.001) in Maximize (0.66) and NaOH wheat (0.69), greatest in oats (0.85), with that in maize grain (0.72) and wheat (0.79) being intermediate. For producers where availability of maize grain for dairy cow rations is limited, such as in WA, these results indicated that NaOH wheat and Maximize may be considered as alternative starch sources to increase post-ruminal digestion of starch, although the magnitude of this increase will still not be as great as for maize grain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.