Abstract
Standard quantum theory was formulated with complex-valued Schrödinger equations, wave functions, operators, and Hilbert spaces. Previous work attempted to simulate quantum systems using only real numbers by exploiting an enlarged Hilbert space. A fundamental question arises: are the complex numbers really necessary in the standard formalism of quantum theory? To answer this question, a quantum game has been developed to distinguish standard quantum theory from its real-number analog, by revealing a contradiction between a high-fidelity multiqubit quantum experiment and players using only real-number quantum theory. Here, using superconducting qubits, we faithfully realize the quantum game based on deterministic entanglement swapping with a state-of-the-art fidelity of 0.952. Our experimental results violate the real-number bound of 7.66 by 43 standard deviations. Our results disprove the real-number formulation and establish the indispensable role of complex numbers in the standard quantum theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.