Abstract
We prove the following theorems. Theorem A. Let G be a group of order 160 satisfying one of the following conditions. (1) G has an image isomorphic to D20 × Z2 (for example, if G ≃ D20 × K). (2) G has a normal 5-Sylow subgroup and an elementary abelian 2-Sylow subgroup. (3) G has an abelian image of exponent 2, 4, 5, or 10 and order greater than 20. Then G cannot contain a (160, 54, 18) difference set. Theorem B. Suppose G is a nonabelian group with 2-Sylow subgroup S and 5-Sylow subgroup T and contains a (160, 54, 18) difference set. Then we have one of three possibilities. (1) T is normal, |ϕ(S)| = 8, and one of the following is true: (a) G = S × T and S is nonabelian; (b) G has a D10 image; or (c) G has a Frobenius image of order 20. (2) G has a Frobenius image of order 80. (3) G is of index 6 in A Γ L(1, 16). To prove the first case of Theorem A, we find the possible distribution of a putative difference set with the stipulated parameters among the cosets of a normal subgroup using irreducible representations of the quotient; we show that no such distribution is possible. The other two cases are due to others. In the second (due to Pott) irreducible representations of the elementary abelian quotient of order 32 give a contradiction. In the third (due to an anonymous referee), the contradiction derives from a theorem of Lander together with Dillon's “dihedral trick.” Theorem B summarizes the open nonabelian cases based on this work. © 2000 John Wiley & Sons, Inc. J Combin Designs 8: 221–231, 2000
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.