Abstract

To effectively manage wood in rivers, we need a better understanding of wood mobility within river networks. Here, we review primarily field-based (and some numerical) studies of wood transport. We distinguish small, medium, large, and great rivers based on wood piece dimensions relative to channel and flow dimensions and dominant controls on wood transport. We suggest further identification and designation of wood transport regimes as a useful way to characterize spatial-temporal network heterogeneity and to conceptualize the primary controls on wood mobility in diverse river segments. We draw analogies between wood and bedload transport, including distinguishing Eulerian and Lagrangian approaches, exploring transport capacity, and quantifying thresholds of wood mobility. We identify mobility envelopes for remobilization of wood with relation to increasing peak discharges, stream size, and dimensionless log lengths. Wood transport in natural channels exhibits high spatial and temporal variability, with discontinuities along the channel network at bankfull flow and when log lengths equal channel widths. Although median mobilization rates increase with increasing channel size, maximum mobilization rates are greatest in medium-sized channels. Most wood is transported during relatively infrequent high flows, but flows under bankfull can transport up to 30% of stored wood. We use conceptual models of dynamic equilibrium of wood in storage and of spiralling wood transport paths through drainage networks, as well as a metaphor of traffic on a road, to explore discontinuous wood movement through a river network. The primary limitations to describing wood transport are inappropriate time scales of observation and lack of sufficient data on mobility from diverse rivers. Improving models of wood flux requires better characterization of average step lengths within the lifetime travel path of a piece of wood. We suggest that future studies focus on: (i) continuous or high-frequency monitoring of wood mobility; (ii) monitoring changes in wood storage; (iii) using wood characteristics to fingerprint wood sources; (iv) quantifying volumes of wood buried within river corridors; (v) obtaining existing or new data from unconventional sources, such as citizen science initiatives, and (vi) creating online interactive data platforms to facilitate data synthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call