Abstract

Avulsing rivers create new pathways on the floodplain and the associated flooding can profoundly affect society1-4. River avulsions are thought to occur when the water column becomes perched above the floodplain5 or when the slope down the flanks of the channel provides a steeper descent than the existing river channel6,7. We test these classical ideas by quantifying the topography around avulsing rivers and show that these mechanisms, historically invoked separately, work together. Near coasts, rivers avulse when the slope away from the channel is steeper, not because they are perched. The opposite is true near mountain fronts; on fans, the alternative paths are similarly steep to the downstream path, so rivers avulse when they are perched above the surrounding landscape. We reconcile these findings and present a new theoretical framework that identifies which rivers are vulnerable to avulsion and predicts the path of an avulsing river. These first-order rules of avulsion suggest that avulsion risks are underestimated in many coastal environments8 and that probabilistic predictions of avulsion pathfinding can efficiently map hazards with minimal information. Applying these principles for risk assessment could particularly benefit the Global South, which is disproportionately affected by avulsions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.