Abstract

In proof-theoretic semantics the meaning of an atomic sentence is usually determined by a set of derivations in an atomic system which contain that sentence as a conclusion (see, in particular, Prawitz, 1971, 1973). The paper critically discusses this standard approach and suggests an alternative account which proceeds in terms of subatomic introduction and elimination rules for atomic sentences. A simple subatomic normal form theorem by which this account of the semantics of atomic sentences and the terms from which they are composed is underpinned, shows moreover that the proof-theoretic analysis of first-order logic can be pursued also beneath the atomic level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.