Abstract

The dynamical interactions of dislocations existing on intersecting glide planes have been investigated using numerical simulations based on isotropic linear elastic theory. It is found that such dislocations either repel, attract and form growing junctions, or attract and form bound crossed states. Which of these occurs can be predicted from a surprisingly simple analysis of the initial configurations. The outcome is determined primarily by the angles which the dislocations initially make with the glide-plane intersection edge, and is largely independent of the initial distance between the dislocations, their initial curvature, or ambient applied stresses. The results provide a rule for dealing with forest interactions within the context of large multiple-dislocation computations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.