Abstract
Improving the quality of nursing care is crucial to maintaining the quality of life. Our objective is to develop a computer-aided evaluation system that enables nursing experts to improve the quality of nursing care. In our previous works, some classification systems based on fuzzy logic, neural networks, and SVMs were developed. Although a classification system with high performance for all nursing-care datasets is desirable, we focus on how to visualize the classification results in this paper. It is important to visualize the results for our nursing-care text classification system because the computer-aided system has to explain the reasons for obtaining such results to human experts. In this paper, a tree-type expression is considered for visualizing the classification results. To visualize classification results with the tree-type expression, we consider a decision tree technique. Word existence, dependency relations, and phrase-based feature vector definitions have been proposed in our previous works. In the present study, these three types of feature vector definitions are compared with one another from the viewpoint of understandability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Computational Intelligence and Intelligent Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.