Abstract

Although it is widely acknowledged that reinforcement learning (RL) can be beneficial for building control, many RL-based control actions remain unexplainable in the daily practice of facility managers. This paper reports a rule reduction framework using explainable RL to enhance the practicality of the control strategy. First, deep Q-learning was applied to explore the optimal control strategies of a parallel cooling system (ice-based thermal system + geothermal heat pump system) of an existing office building. A set of modularized and interconnected data-driven models was developed using ANNs for pretraining an artificial agent. After exploring the control strategies, the decision-making rules of the agent were reduced using a decision tree. The performance of the reduced-order rule-based control proved comparable to the complex and uninterpretable control strategy of deep Q-learning. The difference in energy savings between the two is marginal at 1.2%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.