Abstract

Web usage mining can extract useful information from Weblogs to discover user access patterns of Web pages. Web usage mining itself can be classified further depending on the kind of usage data. This may consider Web server data, application server data, or application level data. Web server data corresponds to the user logs that are collected at Web servers. Some of the typical data collected at Web server are the URL requested, the IP address from which the request originated, and timestamp. Weblog data is required to be cleaned, condensed, and transformed in order to retrieve and analyze significant and useful information. This chapter analyzes access frequent patterns by applying the FP-growth algorithm, which is further optimized by using Genetic Algorithm (GA) and fuzzy logic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.