Abstract
We present a simple linear programming (LP) based method to learn compact and interpretable sets of rules encoding the facts in a knowledge graph (KG) and use these rules to solve the KG completion problem. Our LP model chooses a set of rules of bounded complexity from a list of candidate first-order logic rules and assigns weights to them. The complexity bound is enforced via explicit constraints. We combine simple rule generation heuristics with our rule selection LP to obtain predictions with accuracy comparable to state-of-the-art codes, even while generating much more compact rule sets. Furthermore, when we take as input rules generated by other codes, we often improve interpretability by reducing the number of chosen rules, while maintaining accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.