Abstract
Abstract Many classification tasks can be viewed as ordinal. Use of numeric information usually provides possibilities for more powerful analysis than ordinal data. On the other hand, ordinal data allows more powerful analysis when compared to nominal data. It is therefore important not to overlook knowledge about ordinal dependencies in data sets used in data mining. This paper investigates data mining support available from ordinal data. The effect of considering ordinal dependencies in the data set on the overall results of constructing decision trees and induction rules is illustrated. The degree of improved prediction of ordinal over nominal data is demonstrated. When data was very representative and consistent, use of ordinal information reduced the number of final rules with a lower error rate. Data treatment alternatives are presented to deal with data sets having greater imperfections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.