Abstract

Operating isolated power systems with increasing shares of renewable energy sources requires the integration of battery energy storage systems in order to assure enhanced frequency regulation capabilities. The control mode of power converters interfacing battery energy storage systems to the grid can be based on grid-forming type structures given its superior performance with respect to the mitigation of network frequency disturbances. Nevertheless, in case of network faults, the interactions between existing synchronous units and the grid-forming type converters may adversely affect the global system behavior. Therefore, this paper addresses the study-case of a MW-scale isolated power system with large shares of converter-interfaced renewable generation, operating with both synchronous machines and a grid-forming type power converter. An optimal grid-forming control parameter tuning procedure considering different disturbances is presented, aiming to reduce the associated battery energy storage system power regulating effort following the disturbances. Moreover, it is proposed and discussed the need of a novel rule-based adaptive control solution to switch between different sets of control parameters used in grid-forming type converters depending on the network status following a fault-type disturbance. Extensive numerical simulations performed over different operating scenarios illustrate the performance of the proposed solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.