Abstract

BackgroundImage segmentation is a fundamental technique that allows researchers to process images from various sources into individual components for certain applications, such as visual or numerical evaluations. Image segmentation is beneficial when studying medical images for healthcare purposes. However, existing semantic image segmentation models like the U-net are computationally intensive. This work aimed to develop less complicated models that could still accurately segment images.MethodologyRule-based and linear layer neural network models were developed in Mathematica and trained on mouse vertebrae micro-computed tomography scans. These models were tasked with segmenting the cortical shell from the whole bone image. A U-net model was also set up for comparison.ResultsIt was found that the linear layer neural network had comparable accuracy to the U-net model in segmenting the mice vertebrae scans.ConclusionsThis work provides two separate models that allow for automated segmentation of mouse vertebral scans, which could be potentially valuable in applications such as pre-processing the murine vertebral scans for further evaluations of the effect of drug treatment on bone micro-architecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.