Abstract

The rule 184 fuzzy cellular automaton is regarded as a mathematical model of traffic flow because it contains the two fundamental traffic flow models, the rule 184 cellular automaton and the Burgers equation, as special cases. We show that the fundamental diagram (flux–density diagram) of this model consists of three parts: a free-flow part, a congestion part and a two-periodic part. The two-periodic part, which may correspond to the synchronized mode region, is a two-dimensional area in the diagram, the boundary of which consists of the free-flow and the congestion parts. We prove that any state in both the congestion and the two-periodic parts is stable, but is not asymptotically stable, while that in the free-flow part is unstable. Transient behaviour of the model and bottle-neck effects are also examined by numerical simulations. Furthermore, to investigate low or high density limit, we consider ultradiscrete limit of the model and show that any ultradiscrete state turns to a travelling wave state of velocity one in finite time steps for generic initial conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call