Abstract
We investigate, focusing on the ruin probability, an adaptation of the Cramér–Lundberg model for the surplus process of an insurance company, in which, conditionally on their intensities, the two mixed Poisson processes governing the arrival times of the premiums and of the claims respectively, are independent. Such a model exhibits a stochastic dependence between the aggregate premium and claim amount processes. An explicit expression for the ruin probability is obtained when the claim and premium sizes are exponentially distributed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.