Abstract

AbstractThis study deals with the ruin problem when an insurance company having two business branches, life insurance and non-life insurance, invests its reserves in a risky asset with the price dynamics given by a geometric Brownian motion. We prove a result on the smoothness of the ruin probability as a function of the initial capital, and obtain for it an integro-differential equation understood in the classical sense. For the case of exponentially distributed jumps we show that the survival (as well as the ruin) probability is a solution of an ordinary differential equation of the fourth order. Asymptotic analysis of the latter leads to the conclusion that the ruin probability decays to zero in the same way as in the already studied cases of models with one-sided jumps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.