Abstract

Expedient five-step syntheses of a cyclic bis(benzimidazole)-based amide 5 and two sterically more hindered analogues 23-24 have been developed. These amides are chiral due to the inherent ruffling of the macrocyclic plane. Racemization of the optical antipodes of these compounds has been studied using dynamic chiral stationary phase HPLC. These studies reveal that, while the parent amide 5 racemizes rapidly, for the sterically more hindered amides 23-24, the rate of racemization is significantly reduced. Bis(benzimidazole)-based amides 5 and 23-24 form stable Ni(II) complexes 25-27, respectively. Like their parent ligands, complexes 25-27 are chiral due to their highly ruffled geometry. Studies of these complexes by chiral stationary phase HPLC reveal that metalation leads to a much lower rate of racemization. Incorporation of a strap can slow racemization even further. A series of strapped cyclic amides 54-57, along with their corresponding dimers 58-61, have been prepared. The rate of racemization for amides 54-57 is strongly dependent on the length of the strap. X-ray single-crystal structure analysis of the Ni(II) complex of strapped amide 54 reveals that the bis(benzimidazole) core retains its highly ruffled shape, with the two phenyl rings of the macrocycle located anti to the strap. Chiral separation of strapped ligands 54-57 and their corresponding Ni(II) complexes is shown to be facile by chiral stationary phase HPLC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call