Abstract
Metalloporphyrins undergo remarkable nonplanar distortions of the macrocycle that perturb the chemical and photochemical properties of these important protein cofactors. Further, the tertiary structure of the surrounding protein can manipulate these distortions as a means of regulating biological function. For cytochromes c, for example, an energetically unfavorable, conserved nonplanar distortion of the heme exists and likely plays a role in its electron- transfer function. The heme distortion is primarily of the ruffling (ruf, type (corresponding to the lowest frequency BI,-symmetry normal mode) in which the pyrroles are twisted about the metal-Npyrrole bond. This BI.-symmetry nonplanar distortion is commonly observed in metalloporphyrin crystal structures, as are the saddling (sad) B2,- symmetry distortion, waving (wau) E,-symmetry distortions, and doming (dom) Az,-symmetry distortion. Each of these nonplanar distortions is expected to result in unique alterations of the chemical and physical properties of the nominally planar porphyrin macrocycle. Symmetrical porphyrin substitution with tetrahedrally bonded atoms at the four meso bridging carbons generally results in the BI, ruffling distortion; therefore, we investigated a series of meso-tetrasubstituted porphyrins for which the substituents vary in size (methyl, ethyl, propyl, pentyl, isopropyl, cyclopropyl derivative lla, cyclohexyl, apopinenyl (lo), tert-butyl, adamantyl), increasing the steric crowding at the periphery. Molecular mechanics calculations show increasing degree of ruffling (CaNNCa angle for opposite pyrroles varies from 0 to 57) for this series of porphyrins, generally agreeing with the X-ray structures that are available. In addition, the frequencies of the structure-sensitive Raman lines decrease nonlinearly with increasing ruffling angle. The localization of the Bl, nonplanar distortion in only the C,-C, bond torsion (not the case for the B2 sad distortion) suggests a means by which the B1, distortion might be distinguished from other types of nonplanar distortion by using resonance Raman spectroscopy. Also, the size of the red shifts in the n - n* absorption bands depends on Ca-Cm torsion angle in a nonlinear fashion and the shift is accurately predicted by INDO/s molecular orbital calculations when the nonplanar structures obtained from molecular mechanics are used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.