Abstract

In this paper, we hope to initiate due scientific process on some of the historical criticisms of Einstein gravitation expressed by Einstein himself as well as by others. These criticisms have remained widely ignored for one century and deal with issues such as: the apparent lack of actual, physical curvature of space due to the refraction of star-light within the Sun chromosphere; the absence of a source in the field equations due to the electromagnetic origin (rather than the charge) of gravitational masses; the lack of clear compatibility of general relativity with special relativity, interior gravitational problems, electrodynamics, quantum mechanics and grand unifications; the lack of preservation over time of numerical predictions inherent in the notion of covariance; and other basic issues. We show that a resolution of these historical doubts can be apparently achieved via the use of the novel isomathematics and related iso-Minkowskian geometry based on the embedding of gravitation in generalized isounits, with isodual images for antimatter. Thanks to half a century of prior research, we then show that the resulting new theory of gravitation, known as isogravitation, preserves indeed Einstein's historical field equations although formulated on the iso-Minkowskian geometry over isofields whose primary feature is to have null isocurvature. We then show that isogravitation allows: Einstein field equations to achieve a unified treatment of generally inhomogeneous and anisotropic, exterior and interior gravitational problems; the achievement of a clear compatibility with 20th century sciences; the achievement of time invariant numerical predictions thanks to the strict invariance (rather than covariance) of gravitation under the Lorentz-Santilli isosymmetry; the apparent achievement of a consistent representation of the gravitational field of antimatter thanks ti the isodual iso-Minkowskian geometry; the apparent achievement of a grand unification inclusive of electroweak and gravitational interactions for matter and antimatter without known causality or structural inconsistencies; and other advances. We then present, apparently for the first time, the isogravitational isoaxioms characterized by the infinite family of isotopies of special relativity axioms as uniquely characterized by the Lorentz-Santilli isosymmetry which are applicable to both exterior and interior isogravitational problems of matter with their isodual for antimatter. We finally show, also for the first time, the apparent compatibility of isogravitation with current knowledge on the equivalence principle, matter black holes and other gravitational data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.