Abstract

A coordinatively unsaturated ruthenium complex catalyzed the formation of a carbon-carbon bond between two judiciously chosen alkene and alkyne partners in good yield, and in a chemo- and regioselective fashion, despite the significant degree of unsaturation of the substrates. The resulting 1,4-diene forms the backbone of the cytotoxic marine natural product amphidinolide P. The alkene partner was rapidly assembled from (R)-glycidyl tosylate, which served as a linchpin in a one-flask, sequential three-components coupling process using vinyllithium and a vinyl cyanocuprate. The synthesis of the alkyne partner made use of an unusual anti-selective addition under chelation-control conditions of an allyltin reagent derived from tiglic acid. In addition, a remarkably E-selective E2 process using the azodicarboxylate-triphenylphosphine system is featured. Also featured is the first example of the use of a beta-lactone as a thermodynamic spring to effect macrolactonization. The oxetanone ring was thus used as a productive protecting group that increased the overall efficiency of this total synthesis. This work was also an opportunity to further probe the scope of the ruthenium-catalyzed alkene-alkyne coupling, in particular using enynes, and studies using various functionalized substrates are described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.