Abstract

The oral bioavailability of poorly soluble drugs has always been the focus of pharmaceutical researchers. We innovatively combined nanocrystal technology and solid dispersion technology to prepare novel nanocrystalline solid dispersions (NCSDs), which enable both the solidification and redispersion of nanocrystals, offering a promising new pathway for oral delivery of insoluble Chinese medicine ingredients. The rubusoside (Rub) was first used as the multifunctional stabilizer of novel apigenin nanocrystal-based solid dispersions (AP-NSD), improving the in vitro solubilization rate of the insoluble drug apigenin(AP). AP-NSD has been produced using a combination of homogenisation and spray-drying technology. The effects of stabilizer type and concentration on AP nanosuspensions (AP-NS) particles, span, and zeta potential were studied. And the effects of different types of protective agents on the yield and redispersibility of AP-NSD were also studied. Furthermore, AP-NSD was characterized by infrared spectroscopy (IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD). Solubility was used to assess the in vitro dissolution of AP-NSD relative to APIs and amorphous solid dispersions (AP-ASD), and AP-ASD was prepared by the solvent method. The results showed that 20% Rub stabilized AP-NSD exhibited high drug-loading and good redispersibility and stability, and higher in vitro dissolution rate, which may be related to the presence of Rub on surface of drug. Therefore provides a natural and safe option for the development of formulations for insoluble drugs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.