Abstract

Numerous experimental therapies to promote axonal regeneration have shown promise in animal models of acute spinal cord injury, but their effectiveness is often found to diminish with a delay in administration. We evaluated whether brain-derived neurotrophic factor (BDNF) application to the spinal cord injury site 2 months after cervical axotomy could promote a regenerative response in chronically axotomized rubrospinal neurons. BDNF was applied to the spinal cord in three different concentrations 2 months after cervical axotomy of the rubrospinal tract. The red nucleus was examined for reversal of neuronal atrophy, GAP43 and Tα1 tubulin mRNA expression, and trkB receptor immunoreactivity. A peripheral nerve transplant paradigm was used to measure axonal regeneration into peripheral nerve transplants. Rubrospinal axons were anterogradely traced and trkB receptor immunohistochemistry performed on the injured spinal cord. We found that BDNF treatment did not reverse rubrospinal neuronal atrophy, nor promote GAP-43 and Tα1 tubulin mRNA expression, nor promote axonal regeneration into peripheral nerve transplants. TrkB receptor immunohistochemistry demonstrated immunoreactivity on the neuronal cell bodies, but not on anterogradely labeled rubrospinal axons at the injury site. These findings suggest that the poor response of rubrospinal neurons to BDNF applied to the spinal cord injury site 2 months after cervical axotomy is not related to the dose of BDNF administered, but rather to the loss of trkB receptors on the injured axons over time. Such obstacles to axonal regeneration will be important to identify in the development of therapeutic strategies for chronically injured individuals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call