Abstract
The paramagnetic effect due to the presence of a metal center with unpaired electrons is no longer considered a hindrance in protein NMR spectroscopy. In the present work, the paramagnetic effect due to the presence of a metal center with unpaired electrons was used to map the interface of an electron transfer complex. Desulfovibrio gigas cytochrome c(3) was chosen as target to study the effect of the paramagnetic probe, Fe-rubredoxin, which produced specific line broadening in the heme IV methyl resonances M2(1) and M18(1). The rubredoxin binding surface in the complex with cytochrome c(3) was identified in a heteronuclear 2D NMR titration. The identified heme methyls on cytochrome c(3) are involved in the binding interface of the complex, a result that is in agreement with the predicted complexes obtained by restrained molecular docking, which shows a cluster of possible solutions near heme IV. The use of a paramagnetic probe in (1)HNMR titration and the mapping of the complex interface, in combination with a molecular simulation algorithm proved to be a valuable strategy to study electron transfer complexes involving non-heme iron proteins and cytochromes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.