Abstract
Rubisco is a major target for improving crop photosynthesis and yield, yet natural diversity in catalytic properties of this enzyme is poorly understood. Rubisco from 25 genotypes of the Triticeae tribe, including wild relatives of bread wheat (Triticum aestivum), were surveyed to identify superior enzymes for improving photosynthesis in this crop. In vitro Rubisco carboxylation velocity (V c), Michaelis-Menten constants for CO2 (K c) and O2 (K o) and specificity factor (S c/o) were measured at 25 and 35 °C. V c and K c correlated positively, while V c and S c/o were inversely related. Rubisco large subunit genes (rbcL) were sequenced, and predicted corresponding amino acid differences analysed in relation to the corresponding catalytic properties. The effect of replacing native wheat Rubisco with counterparts from closely related species was analysed by modelling the response of photosynthesis to varying CO2 concentrations. The model predicted that two Rubisco enzymes would increase photosynthetic performance at 25 °C while only one of these also increased photosynthesis at 35 °C. Thus, under otherwise identical conditions, catalytic variation in the Rubiscos analysed is predicted to improve photosynthetic rates at physiological CO2 concentrations. Naturally occurring Rubiscos with superior properties amongst the Triticeae tribe can be exploited to improve wheat photosynthesis and crop productivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.