Abstract

The graph convolutional network (GCN) emerges as a promising direction to learn the inductive representation in graph data commonly used in widespread applications, such as E-commerce, social networks, and knowledge graphs. However, learning from graphs is nontrivial because of its mixed computation model involving both graph analytics and neural network computing. To this end, we decompose the GCN learning into two hierarchical paradigms: 1) graph-level and 2) node-level computing. Such a hierarchical paradigm facilitates the software and hardware accelerations for GCN learning. We propose a lightweight graph reordering methodology, incorporated with a GCN accelerator architecture that equips a customized cache design to fully utilize the graph-level data reuse. We also propose a mapping methodology aware of data reuse and task-level parallelism to handle various graphs inputs effectively. The results show that Rubik accelerator design improves energy efficiency by <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$26.3\times $ </tex-math></inline-formula> – <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$1375.2\times $ </tex-math></inline-formula> than GPU platforms across different datasets and GCN models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.